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This paper reviews new procedures based around the random alloy model that have been
established recently for analyzing chemical diffusion data in binary and ternary alloy systems.
The authors show how atom-vacancy exchange frequency ratios, individual tracer correlation
factors, and vacancy-wind factors can be extracted from the chemical diffusion data. Examples
are taken from intrinsic diffusion data in the Ag-Cd and Ag-Cd-Zn alloy systems and from
interdiffusion data in the Fe-Ni-Cr and Cu-Fe-Ni alloy systems.
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1. Introduction

In 1947 a chemical diffusion experiment revealing a
Kirkendall shift provided the conclusive evidence that va-
cancies are the principal vehicles for atomic transport in
metals and alloys.[1] However, since that time, chemical
diffusion data have rarely been analyzed to provide funda-
mental information about diffusion, by which the authors
mean atom-vacancy exchange frequencies and correlations
between jump directions of the atoms as embodied in cor-
relation factors. Historically, such information has largely
been furnished by tracer diffusion experiments by way of
isotope effect measurements,[2] analysis of curvatures of
Arrhenius plots,[3] pressure dependence,[4] analysis of en-
hancement factors for solvent diffusion in dilute alloys,[5]

Haven Ratio measurements (in ionic conductors)[6] and so
on. For a variety of reasons, relatively few laboratories
worldwide continue to perform measurements of tracer dif-
fusion coefficients using radioisotopes, though this trend
has been offset to some extent by the widespread use of
secondary ion mass spectroscopy (SIMS) measurements us-
ing stable isotopes. The amount of chemical diffusion data
is very large; see, for example, the extensive compilations
for binary alloys[7] and ternary alloys.[8] It is appropriate
therefore to seek and develop new ways of extracting fun-
damental diffusion information from such data. Nonethe-
less, it needs to be recognized that the accuracy of chemical

diffusion data does not usually approach what is routinely
possible in tracer diffusion experiments. In the interdiffu-
sion experiment, vacancies are created and annihilated at
sources and sinks, typically by dislocation climb. If these
vacancy sources and sinks are not efficient or are not at
sufficiently high concentrations, then vacancy supersatura-
tion and undersaturation can readily occur. However, it is
not easy to estimate the effects on interdiffusion of such
possible nonequilibrium vacancy concentrations.[9] Further-
more, in contrast to standard tracer serial sectioning experi-
ments, it is also not straightforward to estimate possible
contributions to chemical diffusion from grain boundary
diffusion processes.

This paper reviews some of the recent methods in the
analysis of chemical diffusion data to extract fundamental
diffusion information. Only interdiffusion forces are con-
sidered in the analyses. Section 2 introduces the random
alloy model that will form the basis of the analysis of
chemical diffusion in binary and ternary alloys. Section 2
also introduces the (random alloy) sum-rule relationship be-
tween the phenomenological transport coefficients. Sec-
tion 3 introduces three diffusion kinetics formalisms that
can be used with the random alloy model. Section 4 shows
how this rule and these diffusion kinetics formalisms can be
used to extract exchange frequency ratios and tracer corre-
lation factors from intrinsic diffusion coefficients measured
in binary and ternary alloy systems. Section 5 focuses on the
analysis of interdiffusion coefficients in ternary systems and
shows how exchange frequency ratios and tracer correlation
factors quantities can be extracted. Section 6 shows how
vacancy-wind factors can be extracted from interdiffusion
coefficients in ternary systems.

2. The Random Alloy and the Sum Rule

In the random alloy model introduced first by Man-
ning[10] the N atomic components and independent vacan-
cies (at a vanishingly small concentration) are distributed
randomly. The atom-vacancy exchange frequencies, notated
as wi can be conceptualized in one of two ways. On the one
hand, one can consider them simply as explicit frequencies
that depend only on the species of atom and not on the
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surroundings. For example wA simply represents the basic
vacancy-atom frequency of a given A atom at all composi-
tions. On the other hand, one can also consider wA as rep-
resenting an average frequency at a given composition.
Then wA represents the average frequency of a given A atom
as it migrates through the lattice sampling the various en-
vironments. Since the average environment must change
with composition, then wA can also be expected to change
with composition.

A particularly useful and exact result of the random alloy
model itself is the so-called “sum rule”[11] that relates
the phenomenological coefficients of nonequilibrium ther-
modynamics Lij to the vacancy-atom exchange frequencies.
The sum rule reduces the number of independent phenom-
enological coefficients. For example, in the binary alloy
there is only one independent phenomenological coefficient
and not three. In the ternary alloy there are three indepen-
dent phenomenological coefficients and not six. In the N
component alloy the sum rule is written as:

�
j=1

N Lij

ci

wi

wj
= Awi i = 1, … , N (Eq 1)

where A is a constant.
The sum rule is not trivial. The general principle of its

derivation can be described as follows. Consider a random
alloy with the vacancy mechanism operating. Assume that
an atom of species i has just made a jump. Accept this
jump as the initial point in time and take a “snapshot” of
the system. Then, for each quantity like Lij, consider how
the system changes from the initial configuration (after the
jump of the i atom) during the jumping of the vacancies, that
is, after the first jump, the second jump, and so on. At each
moment in time choose a vacancy randomly from the cur-
rent configuration (there is a specific probability for the
system to get to this configuration starting with the initial
one), then choose a random direction and find an atom of
some type (or another vacancy). Accordingly, for each di-
rection there is a defined probability that the vacancy makes
an exchange with the atom there. If this is an atom of
species j, then a contribution to the average cosine between
the first jump of the i atom and the final jump of the j atom
is equal to the probability for a system to get to the current
configuration multiplied by the vacancy concentration and
multiplied by the vacancy-atom j exchange frequency (and
divided by the coordination number). Therefore, each con-
tribution of this type for a different atomic species j differs
from one another only by the corresponding exchange fre-
quency. After all of the appropriate summations are done,
find the sum-rule relation as shown in Eq 1. The sum rule is
considered “instantaneous”—it refers to a particular com-
position, and it is therefore unnecessary to include molar
volume changes.

In terms of the collective correlation factors, which are
the correlated parts of the phenomenological coefficients,
Eq 1 is rewritten as:

�
j=1

N f ij
�j�

wi
wj = 1 all j (Eq 2)

where f ij
(j) are the collective correlation factors, sometimes

called correlation functions. Some examples of the useful-
ness of the sum rule in chemical diffusion problems are
provided in the next section.

3. Diffusion Kinetics Formalisms for Use with the
Random Alloy

3.1 The Darken Theory

Although not originally intended as a diffusion kinetics
formalism for the random alloy, it is convenient to treat the
Darken theory[12] here along with the other formalisms.
There are various manifestations of the Darken theory de-
pending on the diffusion context. The common feature,
however, is that all off-diagonal phenomenological coeffi-
cients are put equal to zero. The principal result of this is
that the atoms follow uncorrelated random walks; that is, the
tracer correlation factors are simply given by:

fi ≡ 1 (Eq 3)

Similarly, all vacancy-wind factors appearing in expres-
sions between tracer diffusion coefficients and interdiffu-
sion and intrinsic diffusion coefficients vanish. Using the
Darken approach, a very simple relation exists between the
diagonal phenomenological coefficients and the tracer dif-
fusion coefficients:

Lii = ciD*i�kT Lij = 0 for i � j (Eq 4)

The Darken theory trivially follows the sum rule given pre-
viously.

3.2 The Manning Theory

In the Manning theory,[10] tracer correlation factors are
given by:

fi =
H

2�i + H
(Eq 5)

with the function H being the positive root of the equation:

�
i

�i ci

2�i + H
=

1 − f0

2
(Eq 6)

where f0 is the geometric correlation factor defined by the
crystal structure; for example, f0 � 0.78145 for vacancy
diffusion in the face-centered cubic (fcc) lattice. In Man-
ning’s approach, the phenomenological coefficients are di-
rectly related to the tracer diffusion coefficients by:

Lij =
ciD*i
kT �1 +

2ciD*i

M0�
k

ckD*k�
(Eq 7)

Lij =
2ciD*i cjD*j

kT�M0�
k

ckDk
*� for i � j
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where k and T have their usual meanings, and M0 � 2f0/
(1 − f0). These relations are frequently referred to as the
“Manning Relations.” It is worth noting that the Manning
Relations can also be obtained on the basis of two somewhat
intuitive assumptions without recourse to the random alloy
model.[13] These Relations have been shown to be good
approximations, even for alloys showing order.[14]

3.3 The Moleko, Allnatt, and Allnatt (MAA) Theory

It has been shown by Belova and Murch[15,16] that the
self-consistent Moleko, Allnatt, and Allnatt (MAA)[17]

theory for diffusion kinetics in the random alloy provides
the best agreement with results from Monte Carlo simula-
tions. However, the MAA equations are a good deal more
complicated in structure than those of Manning and some-
what more difficult to implement for analyzing experimen-
tal data. The expression for the tracer correlation factor fi for
the atomic species i is formally similar to that given above
in the Manning approach:

fi =
Hi

2�i + Hi
(Eq 8)

However, now the functions Hi are, in general, different for
each species. The tracer correlation factors can be calculated
using a system of equations; see, for example, Ref 16. Using
the MAA theory, there are no closed-form relations between
the phenomenological coefficients and the tracer diffusion
coefficients. Nonetheless, it is still possible to use straight-
forward numerical methods to find all of the Lij from a given
set of tracer diffusion coefficients for all atomic species.[16]

4. Analysis of Intrinsic Diffusion Coefficients

4.1 Binary Alloy Systems

Intrinsic diffusivities are generally measured by way of
marker shifts in the interdiffusion experiment. However,
such measurements are rather tedious, especially in ternary
alloys and, accordingly, the amount of intrinsic diffusion
data is fairly limited compared with interdiffusion data.[7,8]

For the random alloy, the sum rule provides a surprisingly
simple relationship between the ratios of the intrinsic dif-
fusion coefficients and the ratio of the atom-vacancy ex-
change frequencies at a given composition.[18] For the bi-
nary system:

wA�wB = DA�DB (Eq 9)

where DA and DB are the intrinsic diffusivities in the AB
binary alloy and wA and wB are the atom-vacancy exchange
frequencies. Note the absence of any off-diagonal phenom-
enological coefficients or correlation factors in Eq 9. Un-
fortunately, there are no simplifications for the correspond-
ing tracer diffusion coefficients D*A and D*B; for the random
alloy their ratio remains as:

D*A�D*B = wA fA�wB fB (Eq 10)

where fA and fB are the tracer correlation factors for A and
B. As an example of the use of Eq 9 in Fig. 1(a), the results
for the calculated ratio of the exchange frequencies wAg/wCd
in the Ag-Cd system by way of the measured intrinsic dif-
fusion coefficients[19] using Eq 9 are shown.

Fig 1 (a) The ratio wAg/wCd as a function of cCd at 873 K calculated using intrinsic diffusion coefficients[19] presented as a solid line and
calculated from the tracer diffusion coefficients[20] using the Manning formalism and presented as symbols. (b) Corresponding tracer
correlation factors, solid lines, calculated using ratio of the intrinsic diffusivities; symbols, calculated using experimental tracer data
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There has been a very long tradition in the field of dif-
fusion research to determine tracer correlation factors be-
cause these factors give very direct information on the de-
gree of correlation in the random walks of the atoms. Tracer
correlation factors can be inferred by way of the diffusion
isotope effect.[2] (In ionic conductors they can be inferred
also from the Haven Ratio.[6]) They can also be calculated
from the ratio of the tracer diffusion coefficients using the
random alloy diffusion kinetics formalisms of Manning or
MAA as given above. Importantly, they can also be deter-
mined directly using these theories if the ratio of the ex-
change frequencies is known. As an example, the results in
Fig. 1(a) for wAg/wCd can be processed with the MAA for-
malism and the known geometric tracer correlation factor f0
(� 0.7814 in this lattice) to give values for fAg and fCd.
These are shown in Fig. 1(b). It is seen that Ag atoms have
the higher tracer correlation factors and therefore have the
least correlated motion and vice versa for Cd atoms. Fig-
ures 1(a) and (b) also present the analysis of the tracer
diffusion data[20] by making use of Manning’s random alloy
formalism. It can be seen that there is quite reasonable
agreement between the ratio of the exchange frequencies
and also the correlation factors from these different diffu-
sion experiments.

4.2 Ternary Alloy Systems

For the ternary alloy A-B-C the sum rule (Eq 1) gives
that:

DBA
C DCB

C − DBB
C DCA

C

DAA
C DBB

C − DAB
C DBA

C =
wC

wA
(Eq 11)

DAB
C DCA

C − DAA
C DCB

C

DAA
C DBB

C − DAB
C DBA

C =
wC

wB
(Eq 12)

where DC
AA and so forth are the ternary intrinsic diffusivities

in the ternary alloy and C is, by convention the dependent
concentration variable. Now one can make use of these
equations in the analysis of intrinsic diffusion coefficients in
a ternary alloy system. Figures 2(a) and (c) show results for
the ratio of the exchange frequencies wCd/wAg and wZn/wAg
(Eq 11 and 12) using intrinsic diffusion data in the Ag-Cd-
Zn system at T � 873 K.[21] Again it is possible to gain
access to the corresponding tracer correlation factors fAg,
fCd, and fZn. For the ternary alloy system, either the diffusion
kinetics formalisms of Manning and MAA can be used for
this task. The results using the MAA formalism are shown

Fig. 2 The ratios of wZn/wAg, wCd/wAg and the corresponding tracer correlation factors (calculated by making use of the MAA formalism)
in Ag-Cd-Zn alloys as a function of composition cCd. (a) and (b) cZn � 0.112; (c) and (d) cZn � 0.181
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in Fig. 2(b) and (d). In general terms, as in the binary system
discussed previously, it can be seen that the Ag atoms are the
least correlated in their motion (highest correlation factors).

5. Analysis of Interdiffusion Coefficients in
Ternary Systems

The processing of the four interdiffusivities D̃C
AA, D̃C

AB,
D̃C

BB and D̃C
BA in a ternary alloy system to obtain ratios of

exchange frequencies, and then tracer correlation factors,
can become quite involved. First, as a zeroth approximation
or Darken-type approximation one can simply neglect the
off-diagonal phenomenological coefficients in the analysis.
It is then straightforward to show that the ratios of the
exchange frequencies can be expressed as (for example,
Ref 22):

�1 − cA���1 − cB��m21D̃AA
C − m11D̃AB

C � +
cA�m21D̃BA

C − m11D̃BB
C ��

cA��m11�1 − cB� + m12�D̃AB
C − ��1 − cB�m21 + m22�

D̃AA
C + cAm11D̃BB

C − cAm21D̃BA
C �

=
wC

wA

(Eq 13)

�1 − cB��m21D̃AA
C − m11D̃AB

C � + cA�m21D̃BA
C − m11D̃BB

C �

cBm11D̃AB
C − cBm21D̃AA

C − cAm11D̃BB
C + cAm21D̃BA

C
=

wC

wB

(Eq 14)

or

�1 − cA��m12D̃BB
C − m22D̃BA

C � + cB�m12D̃AB
C − m22D̃AA

C �

cBm12D̃AB
C − cBm22 D̃AA

C − cAm12D̃BB
C + cAm22D̃BA

C
=

wC

wA

(Eq 15)

�1 − cB���1 − cA��m22D̃BA
C − m12D̃BB

C � +
cB�m22D̃AA

C − m12D̃AB
C ��

cB�− �m22�1 − cA� + m21�D̃21
C + ��1 − cA�

m12 + m11�D̃BB
C + cBm12D̃AB

C − cBm22D̃AA
C �

=
wC

wB
(Eq 16)

where �m � m11m22 − m12m21, mij � cj (kT )−1 ��j/�ci and
�1 is the chemical potential of component A and �2 is the
chemical potential of component B.

Manning,[23] among many others, has argued that the
off-diagonal phenomenological coefficients should not be
neglected in this way because they play an important role by
carrying diffusion correlation information. In extreme cases,
such as when there is vacancy binding to one or more
atomic species or when one of the exchange frequencies is
much smaller or much larger than the others, the off-
diagonal coefficients may even predominate over the diago-
nal coefficients and can even change the direction of an
atomic flux. It is sometimes remarked that from an experi-
mental point of view, correlation information may be im-
plied in the diagonal coefficients (when the off-diagonal
coefficients are set equal to zero). In other words, by setting

the off-diagonal coefficients equal to zero, the diagonal co-
efficients are then forced to carry all of the experimental
diffusion information. This is a questionable procedure be-
cause it can obscure valuable information and confounds the
theoretical meaning of the phenomenological coefficients.
However, for the purposes of obtaining ratios of exchange
frequencies, Eq 13 to 16 will provide rough, order-of-
magnitude estimates, but for greater accuracy it will be
necessary to include the off-diagonal coefficients. Their in-
clusion then requires the use of the Manning or MAA dif-
fusion kinetics formalisms and can be quite complicated to
implement, involving the solution of a large set of nonlinear
equations. Belova and Murch have provided details of the
utilization of these formalisms in this context.[24]

As an example of the use of these formalisms to obtain
the ratios of the exchange frequencies and also the tracer
correlation factors, Fig. 3 gives results from the analysis[24]

Fig. 3 Ratios (a) wCr/wNi and (b) wFe/wNi as functions of Ni
composition (Cr and Fe compositions are not shown in these fig-
ures). Symbols × represent two points where all tracer diffusivities
are available. Other symbols: �, results of analysis of the inter-
diffusion and thermodynamic data by making use of zero off-
diagonal phenomenological coefficients approach; �, results of
analysis of the interdiffusion and thermodynamic data by making
use of MAA approach
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of the extensive interdiffusion data provided by Duh and
Dayananda[25] in the Fe-Ni-Cr system using the MAA for-
malism. The authors have also included in the analysis the
thermodynamic activity data as estimated by Duh and
Dayananda.[25] Figure 4 includes the corresponding results
for the analysis of the tracer diffusion data (for two points
only).[26] It can be seen that there is reasonable consistency
between these two quite different types of diffusion mea-
surements. With the exchange frequencies in hand, it is
again possible to determine the tracer correlation factors in
an analogous way to what was done in the binary system.

At high Ni compositions, the Fe atoms show the least
degree of correlation (highest correlation factors), while Ni
atoms show the greatest degree of correlation (lowest cor-
relation factors). The behavior of the Cr atoms falls between
these extremes. On the other hand, at low Ni compositions
the Cr atoms are the most correlated and Ni atoms are the
least correlated while the behavior of Fe atoms falls in be-
tween. This crossing over of the correlation behavior is a
result of a change in the exchange frequencies with com-
position.

One of the possible sources of uncertainty in the analysis
of the interdiffusion data in the ternary alloys from two
diffusion couples measurements can be traced back to the
fact that in principle the vacancy concentrations can be dif-
ferent in the two experiments even at the same atomic com-
position. Even a small difference in the vacancy concentra-
tions can produce quite large effects in the resulting
interdiffusion coefficients D̃C

AA, D̃C
AB, D̃C

BB and D̃C
BA, and

later diffusion kinetics analysis. It is possible to eliminate
this by simply checking the relation that can be derived
from the four equations of the Matano method (they are
written in the way according to Philibert[27]):

D̃AA
C + D̃AB

C
dCB

dCA
= �1 D̃BB

C + D̃BA
C

dCA

dCB
= �2 (Eq 17)

For one diffusion couple, and for the other diffusion
couple:

D̃AA
C + D̃AB

C
dC �B
dC �A

= ��1r D̃BB
C + D̃BA

C
dC �A
dC �B

= ��2r (Eq 18)

where Ci and C �i are the atomic concentrations (and there-
fore a possible change in volume should be taken into con-
sideration), the functions �i are the same functions as de-
scribed in Ref 27 and r � c2

v/c1
v− is the ratio of vacancy

concentrations for the different diffusion couples (at the
same atomic composition, this situation is quite possible if
the vacancy concentration is very small compared with the
atomic ones). Another relation that should be used is:

cAcB�D̃AA
C − D̃BB

C � + cA�1 − cA�D̃BA
C − cB�1 − cB�D̃BA

C = 0
(Eq 19)

Fig. 4 Tracer correlation factors as functions of Ni and Cr compositions. Filled circles represent two points where all tracer diffusion
coefficients are available; open circles, results of analysis of the interdiffusion and thermodynamic data by making use of the MAA
approach.
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After solving these five equations (Eq 17-19) with respect
to D̃C

AA, D̃C
AB, D̃C

BB and D̃C
BA and r and putting the condition

that r � 1, one arrives at the relation:

�cB�1�1 − cB +
dC�B
dC�A

cA� +
dCB

dCA
cA�2�dC�B

dC�A
�1 − cA� + cB��

× �cB��1�1 − cB +
dCB

dCA
cA� (Eq 20)

+
dC�B
dC�A

cA��2�dCB

dCA
�1 − cA� + cB��−1

= 1

This relation can be used to check if the vacancy concen-
tration has remained the same (or relatively close in value)
for the two diffusion couples (at the same atomic composi-
tion, at the point of interception of the two diffusion paths).

On the other hand, the “general” solution for the inter-
diffusivities D̃C

AA, D̃C
AB, D̃C

BB and D̃C
BA obtained as the solu-

tion to Eq 17 to 19 can be used even in the case when r � 1.
These considerations are applicable for a thermodynami-

cally ideal system. In the general case, one has to start with
the equations:

�D̃�C
AA D̃�C

AB

D̃�C
BA D̃�C

BB
��m11 m21

m12 m22
�� 1

dCB�dCA
� =�D̃�C

AA D̃�C
AB

D̃�C
BA D̃�C

BB
��b1

b2
�

= ��1

�2
�

(Eq 21)

�D̃�C
AA D̃�C

AB

D̃�C
BA D̃�C

BB
��m11 m21

m12 m22
�� 1

dC�B�dC�A
� =�D̃�C

AA D̃�C
AB

D̃�C
BA D̃�C

BB
��b�1

b�2
�

= ���1
��2
�

where Eq 19 holds for the functions D̃ij�
C. It is straightfor-

ward now to repeat a similar type of analysis to the system
of Eq 21.

6. Determination of Vacancy-Wind Factors in
Interdiffusion (Ternary Systems)

This section discusses the determination of the vacancy-
wind factors occurring in interdiffusion in ternary systems.
These factors are very well known for binary systems, but
only recently have the vacancy-wind factors themselves for-
mally appeared.[28,29] For the fluxes of atoms J0

A, J0
B and

J0
C(� −J0

A − J0
B) relative to a fixed (usually to one end of

the sample) frame of reference we have that:[28]

JA
0 = −D̃AA

C �cA − D̃AB
C �cB

JB
0 = −D̃BA

C �cA − D̃BB
C �cB

(Eq 22)

where D̃C
ij , i,j � A,B are the interdiffusion coefficients

(functions).

For the matrix of the interdiffusion coefficients:

�D̃AA
C D̃AB

C

D̃BA
C D̃BB

C � =�D̃�C
AA D̃�C

AB

D̃�C
BA D̃�C

BB

��m11 m21

m12 m22
� (Eq 23)

and

D̃�C
AA = kT�LAA

cA
−

LAC

cC
− LA +

cALC

cC
�

D̃�C
AB = kT�LAB

cB
−

LAC

cC
−

cALB

cB
+

cALC

cC
�

(Eq 24)
D̃�C

BA = kT�LAB

cA
−

LBC

cC
−

cBLA

cA
+

cBLC

cC
�

D̃�C
BB = kT�LBB

cB
−

LBC

cC
− LB +

cBLC

cC
�

where Li � ∑k Lik and one assumes the reciprocity condi-
tion Lij � Lji. There is also a relation between the D̃ij�

C[27]

that is analogous to Eq 19:

cB�1 − cB�D̃�C
AB − cA�1 − cA�D̃�C

BA − cAcBD̃�C
AA + cBcAD̃�C

BB = 0
(Eq 25)

The authors denote the approximation for the interdif-
fusion functions Dij�

C using the Darken approach by D̃ij
Darken,

i, j � A,B. Since the vacancy-wind effect is always a result
of off-diagonal phenomenological coefficients, there is no
vacancy-wind effect implied by the Darken approach. Ac-
cordingly, one can combine the ratios of the interdiffusion
functions and the Darken approximation into a matrix of
vacancy-wind factors:

�S� =�SAA SAB

SBA SBB
�

For the vacancy-wind matrix elements Sij:

SAA =
D̃�C

AA

�1 − cA�D*A + cAD*C
SAB =

D̃�C
AB

cA�D*C − D*B�
(Eq 26)

SBA =
D̃�C

BA

cB�D*C − D*A�
SBB =

D̃�C
BB

�1 − cB�D*B + cBD*C

(As an aside, it should be noted that the two diagonal
elements SAA and SBB of the S matrix reduce to the
well-known result[27] for the binary case when chosen as
A-C or B-C, respectively.) The “vacancy-wind” type ex-
pression for the matrix of interdiffusion coefficients can be
formally written as:
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�D̃AA
C D̃AB

C

D̃BA
C D̃BB

C
� =�SAAD̃AA

Darken SABD̃AB
Darken

SBAD̃BA
Darken SBBD̃BB

Darken
��m11 m21

m12 m22
�
(Eq 27)

Equation 26 can be compared with the well-known expres-
sion for the binary case:[26]

D̃ = SD̃Darken� = S�cBD*A + cAD*B�� (Eq 28)

where S is the vacancy-wind factor.
In their Monte Carlo study of the binary random alloy[30]

the authors found, in agreement with the MAA approach,
that S is not restricted by 1/f0 as predicted by the Manning.
In fact, S can become very large at and around the perco-
lation limit composition cA � f0 if wA/wB 	 1.

As a first approximation for the analysis of the vacancy-
wind factors in the ternary system, the Manning approach
can be applied, keeping in mind that at compositions close
to the percolation threshold the vacancy-wind factors could,
in principle, behave differently from the Manning’s theory
prediction. If one applies the Manning approach to the off-
diagonal vacancy-wind factors, one soon has that in terms of
tracer diffusion coefficients:

SAA = 1 +
2cA�cB�D*A − D*B� + cC�D*A − D*C���D*A − D*C�

M0��1 − cC�D*A + cAD*C��cAD*A + cBD*B + cCD*C�

SBB = 1 +
2cB�cA�D*B − D*A� + cC�D*B − D*C���D*B − D*C�

M0��1 − cC�D*B + cBD*C��cAD*A + cBD*B + cCD*C�

(Eq 29)

SAB = 1 +
2

M0
�1 −

D*A
cAD*A + cBD*B + cCD*C

�
SBA = 1 +

2

M0
�1 −

D*B
cAD*A + cBD*B + cCD*C

�
In terms of tracer correlation factors and atom-vacancy ex-
change frequencies, one has very simple relations for the
off-diagonal vacancy-wind factors:

SBA =
fB
f0

SAB =
fA
f0

And for the diagonal terms:

SAA =
�fA�f0�fCcA�wA − wC� − wA

fCcA�wA − wC� − wA
(Eq 30)

SBB =
�fB�f0�fCcB�wB − wC� − wB

fCcB�wB − wC� − wB

One can see now, that according to the Manning’s ap-
proach, the off-diagonal vacancy-wind factors must have an
upper bound of 1/f0, but the lower bound is zero. The di-
agonal vacancy-wind factors are bounded by 1/f0 and unity.

For the binary random alloy A-B one has the reduction
for the vacancy-wind factor S:

S =
�fA�f0�fBcC�wA − wB� − wA

fBcA�wA − wB� − wA
=

�fBf0�fAcB�wB − wA� − wB

fAcB�wB − wA� − wB
(Eq 31)

One can apply these expressions to the ternary alloy
Cu-Fe-Ni (A-B-C).[28] With information being available for
the activities aCu, aFe, aNi of the constituent atomic spe-
cies,[31] the tracer diffusion coefficients can be calculated
for the composition points from the available interdiffusion
coefficients.

To calculate the phenomenological coefficients, the
Darken and Manning approaches can be used. There are six
variants of the system of four equations with three unknown
parameters (these are the three tracer diffusion coefficients).
To solve these systems a strategy can be taken: out of three
equations for the interdiffusion coefficients, keep three in
the these combinations (a) the equation for D̃Ni

CuCu, the equa-
tion for D̃Ni

FeFe, and the equation for D̃Ni
CuCu; (b) the equation

for D̃Ni
CuCu, equation for D̃Ni

FeFe, and the equation for D̃Ni
FeCu;

(c) the equation for D̃Ni
CuCu, the equation for D̃Ni

FeFe, and the
sum of the equations for D̃Ni

CuFe and D̃Ni
FeCu. These three sys-

tems are then solved for each theoretical method (where
possible) and the solutions are then averaged.

From the analysis presented in Tables 1 and 2, one sees
that all diagonal vacancy-wind factors Sii are relatively close
to unity, but the off-diagonal vacancy-wind factors can de-
viate quite substantially from unity. This again seems to
confirm that the Darken approximation works reasonably
well only for the diagonal vacancy-wind factors. In Ref 31,
it was found that in Cu-Fe-Ni alloys the use of the Darken

Table 1 Results of calculations of the vacancy-wind
factor matrix (Sij) based on a Manning-type analysis of
the interdiffusion data in the Cu-Fe-Ni alloy system

cFe cNi cCu SCuCu SFeFe SFeCu SCuFe

0.1496 0.5116 0.3388 1.05 1.00 1.00 0.83
0.1594 0.5325 0.3081 1.02 1.00 0.95 0.88
0.2012 0.6058 0.1930 1.01 1.01 0.88 0.93
0.5417 0.3874 0.0709 1.01 1.00 0.99 0.71
0.5423 0.3407 0.1140 1.02 1.15 0.86 0.89
0.5353 0.3026 0.1621 1.01 1.04 0.93 0.93
0.6930 0.2676 0.0394 1.00 1.16 0.91 0.95

Table 2 Results of calculations of the vacancy-wind
factor matrix (Sij) based on a Manning-type analysis
of the measured tracer diffusion data in the Cu-Ni-Fe
alloy system

cFe cNi cCu SCuCu SFeFe SCuFe SFeCu

0.127 0.686 0.187 1.09 1.01 0.52 0.91
0.265 0.503 0.232 1.12 0.99 0.52 1.06
0.108 0.464 0.428 1.19 0.99 0.71 1.12
0.298 0.375 0.327 1.06 1.02 0.83 0.93
0.105 0.802 0.093 1.01 1.04 0.82 0.53
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approximation in numerical calculations of the interdiffu-
sion profiles gives good agreement with the corresponding
experimental data. This together with the previous conclu-
sion suggests that the terms containing diagonal vacancy-
wind factors are the major contributors to the system of the
flux equations relative to a fixed end, and the off-diagonal
vacancy-wind factors are included in the terms that only
play a minor role in the whole analysis for these alloys.

This paper concludes with a few remarks about the ac-
curacy of the vacancy-wind factors as provided by the Man-
ning analysis. In Table 2 the Manning analysis was applied
to the available tracer diffusion data. In an exact (random
alloy) analysis the diagonal terms could be slightly higher
(if they are already higher than 1.2 from Manning). On the
other hand, for the off-diagonal factors the following is a
guide: if the value obtained by the Manning approach is 0.6
and lower then the exact value could be much lower and can
even change the sign. For the results presented in Table 1
the situation is more complicated because the analysis of the
interdiffusion data is itself generally more complicated and
involves thermodynamic data as well as interdiffusion data.
Nonetheless, the general guide is very similar to the tracer
diffusivities analysis: diagonal terms could be slightly
higher (if they are already higher than 1.2 from Manning)
and the off-diagonal factors could be significantly lower if
they are 0.6 and lower from Manning.

7. Conclusions

This paper reviews a number of new procedures based
around the random alloy model that was established re-
cently for analyzing chemical diffusion data in binary and
ternary alloy systems. The authors showed how atom-
vacancy exchange frequency ratios, individual tracer corre-
lation factors, and vacancy-wind factors can be extracted
from the chemical diffusion data. Examples were taken
from intrinsic diffusion data in the Ag-Cd and Ag-Cd-Zn
alloy systems and from interdiffusion data in the Fe-Ni-Cr
and Cu-Fe-Ni alloy systems.
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